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A bistatic laser radar with a large, sparse, phased array, receive aperture has been pre-
viously proposed for various critical strategic defense applications such as discrimination.
target tracking, pointing, and fire control. The same concept could also be applied to the
difficult problem of theater missile defense (TMD) using an airborne platform (above any
cloud cover). The basic problem is to ensure that the outputs of the receive subapertures
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are coherently combined in order to obtain the desired phased array performance. The gen-

eral approach previously taken relaxes the tolerances on the locations of array elements and
tries to compensate for the resulting phase errors adaptively, by phase conjugating returns
from a "phase-up" source of opportunity found within the target area. We recognized this
procedure as the simplest among a class of "self-cohering" techniques that Interspec has
developed in the past decade for the purpose of obtaining diffraction-limited performance
from distorted apertures for radar applications. In this effort, we adapted and applied a
powerful self-cohering technique to this problem. This advanced technique offers signif-
icantly better reliability and performance compared to currently employed simple phase
conjugation of a phase-up source of opportunity or other related methods.

Most of our algorithmic work during this effort has focused on extending the Spatial
Correlation Algorithm (SCA) to two-dimensional array geometries. The SCA predicts and
corrects aperture distortion using the spatial correlation properties of target returns. We
realized that the SCA is the most promising of all existing self-cohering techniques because
of its ability to correct arbitrarily large phase errors that can be totally independent from
one array element to another without requiring a phase-up source. Instead, a number of
independent looks from the target are needed. These looks, needed for estimating the
required correlations. can be obtained via either of the following two methods (or by a
combination of both):

(1) By range diversity. That is. if the laser radar can resolve the target into a number
of range cells, then each range cell will provide an independent look.

(2) By rotation diversity. A rotating target with a diffuse surface will provide a number
of independent looks while being observed over time. Because of the short optical
wavelengths involved, a minute rotation from pulse to pulse is sufficient to decorre-
late the looks.

The weighted least squares (minimum variance) 2-D SCA, we developed, provides the
optimal solution to the problem. Combined with our new phase-unwrapping techniques
and symmetric phase constraint, our solution is direc., in the sense that it works on all
differential phase measurements at the same time. Moreover. we analyzed and predicted
the performance of our newly developed algorithms. Performance predictions are very

promising. Performance curves show that a 5 x 5 array trying to image an extended target
(consisting of 3 x 3 speckles) at a signal to noise ratio of 0 dB per element per look (with
a total of 20 available looks) will only suffer a 1 dB loss in the normalized mainlobe gain
of its point spread function after applying our optimal solution. Computer simulations
verified this result.

This Phase I SBIR study leads to a Phase II where we propose to build an experimental
10 x 10 heterodyne array, and use it in order to demonstrate the validity and performance of
our advanced self-cohering techniques under realistic conditions. This experimental set-up
will allow us to:

(1) Introduce true mechanical errors.

(2) Experiment with different array geometries.

(3) Introduce vibrations within the array. This can simulate an airborne system for a
Theater Missile Defense NT.ID scenario.

(4) Image a target through significant atmospheric turbulence (for possible TMD ap-
plications).

ISC!/JARY CLASSIFICATION 
r

TWI6 PaGLl h.Ao D.o.e O*A'6104



CONTENTS

Page

0 REPORT SUMMARY ................................................. 1

0.1 Objectives ........................................................ 1

0.2 Technical Problems ................................................ 1

0.3 General Methodology ........................................... 21

0.4 Technical Results..................................................2
0.5 Important Findings and Conclusions ................................. 4

0.6 Implications for Further Research....................................35

0.7 Related Reports and Publications.................................... 6

0.8 References ........................................................ 8

1 INTRODUCTION..................................................... 10

1.1 Background...................................................... 10

1.2 Study Objectives and Tasks ........................................ 12

1.3 Summary of Important Results ..................................... 13

1.4 References ....................................................... 16

2 TWO-DIMENSIONAL SELF-COHERING ............................ 17

2.1 Introduction ...................................................... 17

2.2 One-Dimensional SCA............................................. 18

2.3 Extending the SCA to Two Dimensions ...........................

2.4 Expected Performance............................................. 40

2.5 References ....................................................... 44

3 PHASE 11 EXPERIMENTS........................................... 46

3.1 Equipment Definition.............................................. 46

3.2 Experiments Definition............................................ 50

3.3 References........................................................ 5

4 CONCLUSIONS AND RECOMMENDATIONS ....................... 3

4.1 References........................................................ 58



0.0 REPORT SUMMARY

0.1 Objectives

Phase I of this SBIR was awarded by SDIO (through ONR) with an effective date of June
1, 1991. The main objective was to determine the feasibility of applying our advanced
self-cohering techniques to the large-aperture, coherent array lidar problem. Specifically.
we had the following objectives:

(1) To adapt a number of our advanced self-cohering techniques to large-aperture
coherent array lidar.

(2) To evaluate and quantify the improvements offered by our techniques.

The tasks performed under this effort are:

(1) Baseline Development

(2) Adaptation of Modern Self-Cohering Techniques

(3) Prediction of Expected Performance, and

(4) Design of a Phase II Experiment.

Discussions with Dr. Stuart Clark, Loughborough University. United Kingdom, currently
working at US Naval Weapons Center, China Lake, CA, has resulted in a series of rec-
ommendations to best use resources under this contract. In a letter from Dr. Louis
DeSandare of NWC to Dr. William Miceli of the ONR, it was recommended that Task 1
be de-emphasized and we make use of the results of existing study reports issued by MIT
Lincoln Laboratory to establish a set of performance goals. These goals were relayed to us
by both Dr. Clark and Dr. DeSandre.

0.2 Technical Problems

A bistatic laser radar with a large, sparse, phased array, receive aperture has been pre-
viously proposed for various critical strategic defense applications. The basic problem is
to ensure that the outputs of the receive subapertures are coherently combined in order
to obtain the desired phased array performance. The general approach previously taken
relaxes the tolerances on the locations of array elements and tries to compensate for the
resulting phase errors adaptively, by phase conjugating returns from a "'phase-up" source
of opportunity found within the target area. We recognized this procedure as the simplest
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among a class of "self-cohering" techniques that Interspec has developed in the past
decade for the purpose of obtaining diffraction-limited performance from distorted aper-
tures for radar applications. This SBIR effort adapts and applies a number of innovative
self-cohering techniques to this problem. These advanced techniques offer significantly bet-
ter reliability and performance compared to currently employed simple phase conjugation

of a phase-up source of opportunity.

Space-based large aperture laser radars are expected to play an important role in discrim-
ination, target tracking, pointing, and fire control for strategic defense. The same concept
could also be applied to the difficult problem of theater missile defense (TMD) using an
airborne platform. Our advanced self-cohering techniques will significantly enhance the re-
liability, angular resolution, and detection performance of large aperture coherent optical

arrays.

0.3 General Methodology

Our general methodology has been mostly analytical. We have also closely supported our
analytical effort by extensive computer simulations in order to check the validity of our
algorithms and theoretical performance predictions. Moreover, some of our ideas have
been demonstrated using the existing experimental system at the Naval Weapons Center,

China Lake, California.

0.4 Technical Results

The main result of this Phase I SBIR study is that "'self-phasing" of a large receive array of
optical subaprtures is quite feasible using our advanced "self-cohering" techniques. That
is, it is possible, for a bistatic laser radar system, to obtain diffraction-limited performance
from a badly distorted, large, optical receive aperture adaptively (using returns from the
target area). No strong phase-up point source is required. Instead, a number of indepen-

dent "looks" from the target are needed. These looks can be obtained via either of the
following two methods (or by a combination of both):

(1) By range diversity. That is. if the laser radar can resolve the target into a number
of range cells, then each target range cell will provide us with an independent look.

(2) By rotation diversity. A rotating target with a diffuse surface will provide us with
a number of independent looks as we observe it over time. Because of the short
optical wavelengths involved, a small rotation from pulse to pulse is sufficient to
decorrelate the looks.
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During the course of this study, we developed a number of advanced self-cohering tech-
niques suited to the problem. In particular, we developed:

(1) Least squares two-dimensional (2-D) SCA.

(2) Weighted least squares (minimum variance) 2-D SCA.

(3) The SCA as a "multiple scatterer algorithm".

The first two techniques can be considered as extensions of the Spatial Correlation Al-
gorithm (SCA) to two-dimensional array geometries. The second algorithm provides the
optimal solution to the problem given a reasonable number of looks. For the case where
we have a limited number of looks and some of which contain dominant scatterers, the
third technique exploits these special looks in order to achieve effective self-cohering.

All three techniques solve a set of overdetermined equations relating array di:tortion to
phase measurements. The solutions take on the general form

6= W, (0.1)

where 6 is the vector of phase corrections, W is a weighting matrix, and T is the vector of
differential phase measurements.

We developed a symmetric phase constraint that resulted in a symmetric solution amenable
to fast matrix inversion algorithms (needed for computing IV). Notice that the optimal
weights, IV, can be precomputed and stored in a look-up table for a given system. Because
the solution is symmetric, a small fraction of the entries of IV has to actually be computed

and stored.

Phase-unwrapping of 4 is essential before applying (0.1). We developed the following
methods of phase-unwrapping:

(a) Direct phase-unwrapping.

(b) Generalized, iterative phasor method.

Both methods, (a) and (b), require an initial solution for array phase corrections. We
developed two techniques for obtaining such an initial solution (see Section 2.3.4):

(i) Direct integration of phase differences starting from an element near array
center and moving outwards (radially) in all directions (quickest method).

(ii) Sequential near-optimal/optimal solutions for subarrays of growin- size (most
reliable method).

We analyzed and predicted the performance of our newly developed algorithms. Perfor-
mance predictions are very promising (predicted performance meets and exceeds the goals
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set by the staff of the Naval Weapons Center (NWC), China Lake, California). Perfor-
mance curves show that a 5 x 5 array trying to image an extended target (consisting of
3 x 3 speckles) at a signal to noise ratio of 0 dB per element per look (with a total of 20
available looks) will only suffer a 1 dB loss in the normalized mainlobe gain of its point
spread function after applying our optimal solution. Computer simulations verified this
result. To the best of our knowledge, such performance is unprecedented.

In general, extensive computer simulations have verified all our algorithms and performance
predictions.

We have also designed two sets of Phase II experiments for the purpose of demonstrating
our advanced self-cohering techniques:

(1) Using the NWC experimental system:

(1.1) A number of useful experiments can be performed with existing hardware.

(1.2) On the other hand, the existing CCD array has a very low bandwidth and
offers no significant geometrical flexibility.

(2) Building a 10 x 10 array of individual detectors. This approach makes it possible
to test our techniques under realistic conditions. Such an experimental set-up will
enable us to:

(1) Introduce true mechanical errors.

(2) Experiment with different array geometries.

(3) Introduce vibrations within the array. This can simulate an airborne system
(above the clouds) for a Theater Mlissile Defense (TMD) scenario.

(4) Image a target through significant atmospheric turbulence (for possible TMD
applications).

(5) Upgrade the working bandwidth of the system by upgrading the data acqui-
sition and data transfer systems.

0.5 Important Findings and Conclusions

The main result of this Phase I SBIR study is that 'self-phasing" of a large receive array of
optical subaprtures is quite feasible using our advanced "self-coherin" techniques. That
is, it is possible, for a bistatic laser radar system, to obtain diffraction-limited performance

from a badly diotorted. large. optical receive aperture adaptively (using returns from the

target area). No strong phase-up point source is required.

During the course of this study, we developed a number of advanced self-cohering tech-
niques suited to the problem. In particular. we developed:
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(1) Least squares two-dimensional (2-D) SCA.

(2) Weighted least squares (minimum variance) 2-D SCA.

(3) The SCA as a "multiple scatterer algorithm".

It should be noted that the second algorithm provides the optimal solution to the problem
given a reasonable number of looks.

Also, we developed a symmetric phase constraint that resulted in a symmetric solution
amenable to fast matrix inversion algorithms. The optimal weighting matrix, IV, can be
precomputed and stored in a look-up table for a given system. Because the solution is
symmetric, a small fraction of the entries of W has to actually be computed and stored.

Moreover, we introduced the following highly reliable methods of phase-unwrapping:

(a) Direct phase-unwrapping.

(b) Generalized, iterative phasor method.

Finally, we analyzed and predicted the performance of our newly developed algorithms.
Performance predictions are very promising (predicted performance meets and exceeds
the goals set by the staff of the Naval Weapons Center (NWC), China Lake. California).
Performance curves show that a 5 x 5 array trying to image an extended target (consisting

of 3 x 3 speckles) at a signal to noise ratio of 0 dB per element per look (with a total of
20 available looks) will only suffer a 1 dB loss in the normalized mainlobe gain of its point
spread function after applying our optimal solution. Computer simulations verified this
result. To the best of our knowiedge, such performance is unprecedented.

0.6 Implications for Further Research

This Phase I SBIR study leads to a Phase II where we propose to build the 10 x 10 array
experimental system described in Section 3.1.2. and use it in order to demonstrate the va-

lidity and performance of our advanced self-cohering techniques under realistic conditions.
This experimental set-up will allow us to:

(1) Introduce true mechanical errors.

(2) Experiment with different array geometries.

(3) Introduce vibrations within the array. This can simulate an airborne system (above
the clouds) for a Theater lissile Defense (TNID) scenario.

(4) Image a target through significant atmospheric turbulence (for m)sstible TMD ap-
plications).
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(5) Upgrade the working bandwidth of the system by upgrading the data acquisition
and data transfer systems.

0.7 Related Reports and Publications

A list of related reports and publications is provided in Section 0.8. Reference [1] is a
viewgraph presentation given to Interspec technical staff about some of the applications
of large-aperture, coherent array lidar in the SDI environment. A description of the ex-
perimental system at NWC is also included in [1]. References [2-5] describe the Spatial
Correlation Algorithm (SCA) in details. Reference [5] is the notes from a short course
given to the research staff of the Naval Weapons Center (NWC) by Interspec. The
course discussed various self-cohering techniques developed by Interspec as well as by
other authors. Additional useful material about the subject can be found in references
[6-9].

Reference [10] gives a good treatment of the related Knox-Thompson Algorithm, used in
astronomy (adaptive optics) in order to achieve diffraction-limited imaging from very large
telescopes in the presence of atmospheric turbulence. Similar to the SCA, phase differences
are obtained from correlation measurements. On the other hand, optical telescopes are
passive sensors responding to incoherent radiation. Incoherence is a major advantage in
adaptive optics. A major contribution of the SCA is that it "decoheres" radar returns by
range or rotation diversity (or by a combination of both).

References [11,12] are based on the Shear Averaging Algorithm (SAA) of Fienup. In [11],
Fienup shows that the SAA is identical to the SCA in its basic form. However, our work
preceded the SAA by several years [2,31. Reference [12] describes applying the SAA to a
two-dimensional optical coherent array (with an experimental set-up very similar to that
at NWC). In [12], use has been made of results readily available in the optical literature
with regard to Knox-Thompson imaging [10]. In this Phase I SBIR effort, we went well
beyond these results in the following important respects:

(1) We developed the optimal solution to the problem (the weighted least squares solu-
tion), for which we derived the input covariance matrix of all phase measurements.

(2) We developed far more reliable phase-unwrapping methods.

(3) We analyzed self-cohering performance in terms of a more tangible criterion (ex-
pected loss in the mainlobe of the point spread function) that takes into account all
relevant system parameters (as embodied in the input covariance matrix of phase
measurements and the transfer matrix of the set of overdetermined equations).

(4) Combined with our phase-unwrapping methods. our optimal solution is direct in the
sense that it works on all phase measurements at once. This minimizes the chance
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of accumulating errors due to unresolved 2,r ambiguities along the way, a serious
problem that can arise in the sequential method described in [10] and adopted by
[12] (a similar sequential method is also described in [13]).

Reference [14] describes the experimental system at NWC in details. In reference f115. a
similar laser radar concept is described. The authors adopt the competing approach of
"phase retrieval". However, this approach is known to suffer from serious uniqueness and
convergence problems for coherently illuminated objects [16]. Reference [16] reports on
successful imaging experiments at NWC based on extending the SCA to two-dimensions
in ways similar to [12].
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1.0 INTRODUCTION

I
1.1 Background

m Optical sensors fit the strategic defense environment quite naturally. Space-based optical

sensors do not suffer from atmospheric attenuation or weather problems that normally

limit the utility of ground-based/airborne optics. Compared to radar, optical sensors offer
in general reduced weight, size, and power requirements for comparable detection and

m angular resolution performance. They are also less susceptible to ground-based jammers.

While passive infrared (IR) optical sensors offer large area coverage rates and a specially
heightened sensitivity to detecting rocket plumes (especially during the boost phase, which
makes them extremely valuable for early warning), they only provide angle-angle measure-
ments. Range and doppler information is lost because of the passive noncoherent nature
of IR sensors. Laser radars (lidars) fill this void. In addition to providing the valuable
range information, they offer exceptionally high doppler sensitivity and pointing accuracy.
The extraordinary doppler sensitivity offered by lidars (combined with high range and
angular resolution) is essential to a number of discrimination schemes. A possible active
discrimination concept relies on lidar measurements to observe bus kinetic reaction during
the deployment of decoys and re-entry vehicles. Because of large mass differences between
decoys and re-entry vehicles, the warhead-carrying bus is expected to react differently de-
pending on whether a decoy or a true re-entry vehicle is being ejected. Lidar measurements
are also essential to a number of interactive discrimination concepts (using an interactive
probe during midcourse). They are also vital for early discrimination during the terminal
phase. In addition to the critical role lidars are expected to play in various aspects of the
paramount discrimination problem, they are also expected to play ind',spensable roles in
target tracking, pointing, and fire control.

m Large aperture laser radars are needed for strategic defense applications. Large apertures
are necessary in order to achieve the required detection and angular resolution performance
at the long ranges involved. Building a large monolithic transmit/receive optical aperture
poses a number of problems. Holding mechanical tolerances (to within a small fraction of
the optical wavelength) over such a large aperture will be extremely difficult in the face of
orbital temperature changes and mechanical vibrations associated with gross steering of
the whole aperture. Other problems include poor beam agility, high power requirements

for beamsteering, and launch constraints on the size of the monolithic aperture.

We have proposed a bistatic laser radar system where a relatively small aperture provides
the illumination, while a large, thinned, phased array (composed of a number of subaper-

tures) is used on receive. Optical echoes received by the subapertures are to be coherently
combined after down-conversion (heterodyning) into baseband electronic signals. Both of
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the transmit and receive apertures are envisioned to be mounted oil tile same platform.
Such a sensor, if feasible, offers a number of significant advantages over a large monolithic
lidar of comparable detection performance. These advantages include [1]:

(1) High beam agility and reduced power requirements for beamsteering. Multiple si-
multaneous receive beams can be formed (computed) in the signal processor. The
need for physically steering the transmit and receive beams is highly reduced.

(2) Large system "trade space" which for a given performance can lead to a substantial
cost and weight saving (e.g., the tradeoff between transmitter and receiver aperture
sizes).

(3) Greater light collection for range doppler imagery (RDI). This results in improved
signal-to-noise-ratio (SNR) and working range in RDI mode.

(4) Substantially greater angular resolution which can lead to either

(4.a) Angularly separated imaging (ASI) i.e., the ability to spatially separate tar-
gets, or

(4.b) True angularly resolved imagery (ARI) i.e.. "seeing" details on an individual
target. This allows up to 4-dimensional (R-D-A-A) imagery and maximizes
the information obtainable about the targets.

(5) True bistatic operation (not restricted to round-trip dwell time before repointing).

(6) Sparse arrays offer greater resolution with only a modest increase in weight. Without
arrays, long-range space-based laser radars will be quite heavy.

(7) Holding mechanical tolerances over the relatively small transmit aperture and the
individual receive subapertures is much easier.

In spite of all of the above favorable features, the problem of coherently combining the
outputs of the receive subapertures needs to be solved. Trying to maintain the required
mechanical tolerances on the locations of the phase centers of the receive subapertures
(in order to achieve acceptable phased array performance) defeats a major purpose of the
proposed concept, namely, making large optical apertures possible without requiring strict
mechanical rigidity. As mentioned earlier, maintaining the required mechanical tolerances
throughout the array will be extremely difficult given the large size of the whole receive
aperture. Our approach maintains the required tolerances only within the relatively small
subapertures. leanwhile, the requirements on knowing the locations of the phase centers
of these subapertures (within the large array) are significantly relaxed. This way, larger
receive apertures will be made possible. Even launch constraints on aperture size could be
loosened as folding the array during launch might become possible.

Without accurate knowledge of the locations of the elements of the receive array, our
approach depends on compensating for element position errors adaptively (closed-loop).
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using returns from the target area. A number of techniques can achieve this goal. We
refer to them as "self-cohering" techniques. The simplest of these techniques depends on
finding a "phase-up" source within the target area and conjugating its phase across the
aperture (in the signal processor). This procedure focuses the array on that source. Only
limited knowledge of element positions is needed in order to scan the formed receive beam
in angle within the target area (i.e., forming multiple simultaneous receive beams).

It should be noted that the basic approach has been described by other authors [1]. We
realized the existence of an ample opportunity for us to significantly contribute to the
success of the basic concept in the following ways:

(1) Applying a number of innovative self-cohering techniques to the problem. These ad-
vanced techniques (developed by Interspec) offer significantly better performance
and reliability compared to simple phase conjugation of a phase-up source of op-
portunity. One technique synthesizes a superior phase-up source from all potential
sources (of inferior phasing quality) that might exist in the target area. Another
technique utilizes the spatial correlation properties of the reradiated field in order
to estimate the required phase corrections.

(2) Offering a unique and deep understanding of self-cohered systems. This expertise
encompasses their potential, limitations, and algorithms necessary to their success.
Our experience stems from working for about a decade with distorted apertures (real
or synthetic) in a radar environment (mostly at microwave frequencies) in order to
obtain diffraction-limited performance.

As mentioned above, space-based large aperture laser radars are expected to play an impor-
tant role in discrimination, target tracking, pointing, and fire control for strategic defense.
The same concept could also be applied to the difficult problem of theater missile defense
(TMD) using an airborne platform (above the clouds). Our advanced self-cohering tech-
niques significantly enhance the reliability, angular resolution, and detection performance
of large aperture coherent optical arrays.

1.2 Study Objectives and Tasks

Phase I of this SBIR was awarded by SDIO (through ONR) with an effective date of June
1, 1991. The main objective was to determine the feasibility of applying our advanced
self-cohering techniques to the large-aperture, coherent array lidar problem. Specifically,
we had the following objectives:

(1) To adapt a number of our advanced self-cohering techniques to large-aperture
coherent array lidar.
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(2) To evaluate and quantify the improvements offered by our techniques.

The tasks performed under this effort are:

(1) Baseline Development

(2) Adaptation of Modern Self-Cohering Techniques

(3) Prediction of Expected Performance, and

(4) Design of a Phase II Experiment.

Discussions with Dr. Stuart Clark, Loughborough University., United Kingdom, currently
working at US Naval Weapons Center, China Lake. CA, has resulted in a series of rec-
ommendations to best use resources under this contract. In a letter from Dr. Louis
DeSandare of NWC to Dr. William Miceli of the ONR. it was recommended that Task 1
be de-emphasized and we make use of the results of existing study reports issued by MIT
Lincoln Laboratory to establish a set of performance goals. These goals were relayed to us
by both Dr. Clark and Dr. DeSandre.

Task 2 has focused on extending the Spatial Correlation Algorithm (SCA), [2,3], to two-
dimensional array geometries. We realized that the SCA is the most promising of all
existing self-cohering techniques because of its ability to correct arbitrarily large phase
errors that can be totally independent from array element to another. Another reason
that made us exclude other algorithms such as the Multiple Scatterer Algorithm (MSA).
[4-7], was that we were able to show that the SCA itself can work as a superior --multiple
scatterer algorithm" for the case where we have a limited number of looks with some
of which containing dominant scatterers. Correlation measurements based exclusively on
these special looks (processed according to the SCA) proved to be a better way of achieving
effective self-cohering [6].

1.3 Summary of Important Results

The main result of this Phase I SBIR study is that "'self-phasing" of a large receive array of
optical subaprtures is quite feasible using our advanced -'self-cohering" techniques. That
is. it is possible, for a bistatic laser radar system, to obtain diffraction-limited performance
from a badly distorted. large, optical receive aperture adaptively (using returns from the
target area). No strong point source is required. Instead. a number of independent "looks'*
from the target are needed. These looks can be obtained via either of the following two
methods (or by a combination of both):

(1) By range diversity. That is, if the laser radar can resolve the target into a number
of range cells, then each target range cell will provide us with an independent look.
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(2) By rotation diversity. A rotating target with a diffuse surface will provide us with

a number of independent looks as we observe it over time. Because of the short
optical wavelengths involved, a small rotation from pulse to pulse is sufficient to
decorrelate the looks.

During the course of this study, we developed a number of advanced self-cohering tech-
niques suited to the problem. In particular, we developed:

(1) Least squares two-dimensional (2-D) SCA.

(2) Weighted least squares (minimum variance) 2-D SCA.

(3) The SCA as a "multiple scatterer algorithm".

The first two techniques can be considered as extensions of the Spatial Correlation Al-
gorithm (SCA) to two-dimensional array geometries. The second algorithm provides the
optimal solution to the problem given a reasonable number of looks. For the case where
we have a limited number of looks and some of which contain dominant scatterers, the

third technique exploits these special looks in order to achieve effective self-cohering.

All three techniques solve a set of overdetermined equations relating array distortion to
phase measurements. The solutions take on the general form

6 = WT_, (1.1)

where 6 is the vector of phase corrections. IV is a weighting matrix, and kP is the vector of
differential phase measurements.

We developed a symmetric phase constraint that resulted in a symmetric solution amenable
to fast matrix inversion algorithms (needed for computing W). Notice that the optimal
weights, TV, can be precomputed and stored in a look-up table for a given system. Because
the solution is symmetric, a small fraction of the entries of IV has to actually be computed
and stored.

Phase-unwrapping of T is essential before applying (1.1). We developed the following
methods of phase-unwrapping:

(a) Direct phase-unwrapping.

(b) Generalized. iterative phasor method.

Both methods. (a) and (b). rcquire an initial solution for array phase corrections. We
developed two techniques for obtaining such an initial solution (see Section 2.3.4):

(i) Direct integration of phase differences st arting from an element near array
center and moving outwards (radially) in all directions (quickest method).
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(ii) Sequential near-optimal/optimal solutions for subarrays of growing size (most
reliable method).

We analyzed and predicted the performance of our newly developed algorithms. Perfor-
mance predictions are very promising (predicted performance meets and exceeds the goals
set by the staff of the Naval Weapons Center (NWC). China Lake, California). Perfor-
mance curves show that a 5 x 5 array trying to image an extended target (consisting of
3 x 3 speckles) at a signal to noise ratio of 0 dB per element per look (with a total of 20
available looks) will only suffer a 1 dB loss in the normalized mainlobe gain of its point
spread function after applying our optimal solution. Computer simulations verified this
result. To the best of our knowledge, such performance is unprecedented.

In general, extensive computer simulations have verified all our algorithms and performance
predictions.

We have also designed two sets of Phase II experiments for the purpose of demonstratimn

our advanced self-cohering techniques:

(1) Using the NWC experimental system:

(1.1) A number of useful experiments can be performed with existing hardware.

(1.2) On the other hand, the existing CCD array has a very low bandwidth and
offers no significant geometrical flexibility.

(2) Building a 10 x 10 array of individual detectors. This approach makes it possible
to test our techniques under realistic conditions. Such an experimental set-up will

enable us to:

(1) Introduce true mechanical errors.

(2) Experiment with different array geometries.

(3) Introduce vibrations within the array. This can simulate an airborne system
(above the clouds) for a Theater 'Missile Defense (T.\ID) scenario.

(4) Image a target through significant atmospheric turbulence ifor possible TMD
applications).

(5) Upgrade the working bandwidth of the system by iipgraliuiit the data acqui-
sition and data transfer systems.
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2.0 TWO-DIMENSIONAL SELF-COHERING

2.1 Introduction

As mentioned earlier, most of our algorithmic work during this effort has focused on extend-
ing the Spatial Correlation Algorithm (SCA) [1-3] to two-dimensional array geometries.
We realized that the SCA is the most promising of all existing self-cohering techniques
because of its ability to correct arbitrarily large phase errors that can be totally indepen-
dent from one array element to another without requiring a phase-up source. Moreover,
the SCA proved to work as a superior "multiple scatterer algorithm" in situations where
we have a limited number of looks with some of which containing dominant scatterers.

Correlation measurements based exclusively on these special looks (processed according to
the SCA) proved to be a better way of achieving effective self-cohering.

Although, the SCA has been developed for the purpose of phase cohering a distorted array
in the absence of a strong point source (a dominant scatterer or a beacon) using the spatial
correlation properties of radar clutter, the algorithm was shown to work exceptionally well
using returns from man-made targets. The SCA reliably predicts and corrects aperture
distortion. Array distortion can be geometrical (due to lack of accurate knowledge of ele-
ment positions resulting, for example, from airframe vibrations), or optical/electrical (due
to different lengths of the optical fibers distributing the LO signal to coherent detectors,
mismatches, etc.). Moreover, distortion of the phase front due to propagation anomalies
can often be modeled as a pattern of phase errors across the array and hence can be
compensated for. The array itself is assumed to be fairly general. It can be random or
periodic, physical or synthetic, one- or two-dimensional, transmit/receive or receive onl3
The main restriction is that the interelement spacing should not exceed the spatial cor-
relation distance of the reradiated field. For a man-made target, this distance is roughly
equal to 2-R, where A is the wavelength, L is target size, and R is range. This distance
can be much greater than A/2, allowing the receive array to be highly thinned. _More-
over, we can show that the restriction on inerelement spacing can be significantly relaxed,
by doppler processing of target returns [4], whenever a net rotation exists in the relative
motion between the target and lidar platform.

In this section, we extend the spatial correlation algorithm to two-dimensional array ge-
ometries. However, for reasons of continuity, we first introduce the original one-dimensional
SCA.
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2.2 One-Dimensional SCA

The SCA relies, in its simplest forms, on measuring the nearest-neighbor spatial corre-

lation between target signals received by the array elements over range. The basic idea
behind the algorithm is that R(X), the spatial correlation function of target returns at the
receive aperture will be real provided that scatterers (illuminated by the mainbeam of the
transmitter) are statistically homogeneous when averaged over a number of independent

looks. Nonzero arguments of the measured correlations are attributed to phase errors at
the array. We will show that array phase errors can be estimated from the correlation
measurements and hence can be compensated for.

To illustrate, let us consider the simple case of a linear, periodic, receive array with interele-

ment spacing d. Let us also assume that the transmit and receive apertures are cocentered

and the transmit beam is steered to the broadside direction of the receive array. In the
absence of any phase errors in the array. each pair of adjacent elements (forming an in-
terferometer of size d) should measure the same quantity R(d) irrespective of its position
along the array. This is a direct consequence of the assumed spatial stationarity of the

random process representing target returns across the receive aperture as observed over
a number of independent looks. Further. if R(d) is real, then each element pair will be
measuring IR(d)Ie j ° . However, in the presence of a phase error pattern {6,, n = 1,' '', N}
across the N-element array- correlation measurements will start to reflect these phase er-

rors. In particular, the n th correlator (formed by elements number n and n + 1) will be
measuring IR(d) I[J"-6"+,1. That is. the argument of the correlation measurement made
by any such element pair gives a direct estimate of the difference between the two phase
errors suffered by the pair of elements involved. We will show that the available N - 1
such phase difference esti'nates are sufficient to estimate the phase error pattern across the

receive aperture (within . a unknown but unimportant additive constant phase term). The
estimated phase error pattern can now be used to cohere the array by subtracting it from
the phases of the received data across the aperture off-line. Then. muhiple simultaneous
beams can be formed by Fourier transforming the corrected data. It is important to notice
that the SCA places no restrictions on the range of initial phase errors it can correct for.

Since the solution is direct (non-iterative). initial phase errors can range anywhere between
-7r, +7r without affecting the performance of the algorithm.

Let us assume that the field measured at the n th element is given by c,, = ei" where
e, is the error-free value produced by a large number of non-coherent scatterers on the

surface of the illuminated target. and 6 , is the phase error due to array distortion. The
n th correlator provides an estimate. f',, of the quantity

R' Efe + } = E{ec,,+i }JW -A+,)
= n +
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R' is estimated over a number of independent looks. If we have M looks, we compute

M
-- enei*n-l

where i denotes the i th look.

The phase of R, called ,, is the quantity of interest. Assuming that we have good phase
estimates { a}, we can approximately write

On - (b, - b+l) + I ,=1,...,N-1 (2.1)

where f = arg{R(d)}.

Now we form the quantity

n-1

On E L'k (2.2)
k=i

(bi - 6.) + (n - 10l (2.3)

which we use as a phase correction by adding it at the n th element (for all n). The total
phase shift becomes

b6n = 6n + 6, (2.4)

t 61 + (n - 1)0 (2.5)

Now the phase 3(X) of the spatial correlation function plays a major role in cohering
the array. If the spatial correlation function is real and positive in the region of interest

(,3 = 0), we have an ideal situation, for then (2.5) reduces to

bon , tl = constant independent of n (2.6)

and the random variable 6, has been replaced by a constant. The result is a well-formed
beam pointing roughly at target cenroid. It is straightforward to see that the same result

applies to nonperiodic arrays as long as R(X) is real.

Let us for the moment assume a search scenario where most radar returns are due to ground
or sea clutter. The assumption that the spatial correlation function at the aperture. R(X).

should be real is a direct consequence of the Fourier transform relationship that exists
between the clutter illumination intensity function. 1(u). and R(X) [1-31. Here. it = sin0
where 0 is the angle measured off the axis of the illuminator, and X is measured along
the receive aperture. 1(u) describes the average power reradiated by the scattering centers
within the illuminated sector as a function of the reduced angular variable u If clutter
is statistically homogeneous over range. 1(u) will be proportional to 1.f( )12. the power
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pattern of the transmitter which is real by definition. A real symmetric I(u) will result in
a real R(X). For example, the radiation pattern of a uniform aperture will be proportional

to sincDu/A and I(u) will be proportional to sinc2Du/A. The autocorrelation function

R(X), being the Fourier transform of I(u), will be triangular with base 2D. In general,
the correlation distance will be on the order of D. Thus, the largest interelement distance

in the receiving array should not exceed D (with some margin)." It is worthwhile to note

that the Fourier transform relationship that exists between R(X) and I(u) in the space-

angle domains is very similar to the Wiener-Khinchine theorem that relates the temporal
autocorrelation function R(r) and the power spectral density S(f) of a temporal random

process in the time-frequency domains.

The independent looks needed for estimating the required correlations can be obtained via

either of the following two methods (or by a combination of both):

(1) By range diversity. That is, if the laser radar can resolve the target into a number
of range cells, then each target range cell will provide us with an independent look.

(2) By rotation diversity. A rotating target with a diffuse surface will provide us with

a number of independent looks as we observe it over time. Because of the short

optical wavelengths involved, a minute rotation from pulse to pulse is sufficient to

decorrelate the looks.

It should be noted that the spatial correlation algorithm is a very robust self-cohering

technique. Although independence of the target scene can be forced by estimating the

correlation values over a large number of looks (using fine range resolution and or exploiting

target rotation) to insure statistical homogeneity of scatterers, the algorithm will not fall

apart easily if this condition becomes increasingly unsatisfied. Even if R(X) were complex

(0 # 0), it would still be possible to self-cohere a periodic aperture. A small beam pointing
error proportional to the slope of the phase of R(X) will result in this case however. This

can easily be seen from (2.5) where the linear phase term (n - 1),3 will cause the image

shift. Moreover, it can be shown that even if the array were nonperiodic and R(X) is

complex but has a linear phase. it would still be possible to self-cohere the aperture. A

beam pointing error proportional to the slope of the phase of R(X) will result in this case

too. The condition of phase linearity of R(X) will also be valid (to first order) for a general

scene because the argument of R(X) has to be an odd function all the time because 1(u),

the Fourier transform of R(X), is always real (by definition).

As mentioned earlier, experimental evidence has shown that the SCA works remarkably
well when applied to returns from man-made extended targets such as aircraft [6]. A

surprisingly small nunber of range bins was needed in order to achieve effective self-

cohering. These results are attributed to the above-mentioned inherent resiliency of the

For a man-made target, this distance is roughly equal to A R. where A is the wavelength,
L is target size, and R is range.
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algorithm. Moreover, as mentioned earlier, the SCA proved to work as a superior "multiple
scatterer algorithm" in situations where we have a limited number of looks where some of

which are dominated by specular reflections. Correlation measurements based exclusively

on these special looks (processed according to the SCA) proved to be a better way of

cohering the array.

Notice that a number of generalizations are straightforward:

(1) The transmit beam does not have to be steered to the broadside direction. For
targets at other angles, using the same processing described above, the formed

receive beam will be retrodirective; it will always follow target centroid. This is

because correlation measurements in this case will show the difference in phase due

to angle of arrival in addition to the difference in array phase errors. Estimating

the sum of the angle of arrival linear phase term plus the phase error term at each

element and subtracting the sum from the phases of the received data across the

array forms a "retrodirective" receive beam in the sense that direct summation of

the corrected data will form a beam in the direction of the center of the illuminated

target.

(2) The array does not have to be periodic. For a linear. nonperiodic (or random)

array, the correlators will be measuring IR(xi - xi+1 )je [' i -[i+] as long as R(X)

is real. The argument of the correlation measurement (which is what we process)

will remain unchanged provided that the interelement distance (Ix, -.ri+l) does not

exceed the spatial correlation distance.

(3) Nearest-neighbor correlations provide the minimum amount of information needed
to estimate the phase error pattern (and hence cohere the array). Following the

nomenclature used for periodic arrays (or periodically sampled time-domain data).
we will refer to nearest-neighbor correlations as "first-lag" correlations. With this

nomenclature, the correlation between elements number i and i + 2 will be referred
to as a "second-lag" correlation and so on. For the case where the maximum first-

neighbor interelement distance is much smaller than the spatial correlation distance

of target returns, "multiple-lag" correlations can be used to set a number of over-
determined equations that can be solved for the receive phase errors in the least

square error sense to improve the performance of the algorithm i1,2.3.6].

(4) The array does not have to be linear. The algorithm can be extended to treat two-
dimensional arrays. Two-dimensional geometries are inherently over-determined in1
the sense that there are more equations (or measurements) than tiere are unknowns.

Single-lag as well as multiple-lag equations can be set to estimate rie 2-D phase error
pattern across the receive array.

(5) The transmit and receive apertures do not have to )e exactly ,'ocentered. The

algorithm will be tolerant to considerable displacements in tie cnters of the two
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apertures provided that the bistatic angle (from the transmitter to the target area

and back to the receiver) is small. The formed receive beam will still be pointing at
the center of the illuminated target.

I
2.3 Extending the SCA to Two DimensionsI
For a one-dimensional receive array using only nearest-neighbor correlation phase measure-

I ments, the number of equations (differential phase errors) equals the number of unknowns
(phase corrections) and hence a unique solution exists. For a two-dimensional array, the
problem is inherently over-determined in the sense that there are more equations (or mea-
surements) than there are unknowns. Figure 2.1 illustrates the situation for an N x M
periodic array. Here, the number of unknowns is

N,, = NM - 1 (2.7)

If we consider first-neighbor correlations only (Case 1, Figure 2.1.a), the number of equation
(which is equal to the solid lines connecting element pairs) is given by

V = 2N 11 - (N +MA/), (2.S)

which is roughly equal to twice the number of unknowns for large arrays (N, M > 1).

If we consider diagonal neighbors as well (Case 2, Figure 2.1.b), the number of equations
becomes

N = 4NM - 3(N + N1) + 2, (2.9)

which is roughly equal to four times the number of unknowns for large arrays.

Keeping the same notation of the previous section. and assuming a real two-dimensional
spatial correlation function R(X, Y), our over-determined set of equations will have the
general form

6ij - k1 -_ Wij,kl. (2.10)

where 6 ij is the needed phase correction (unknown) for the array element at location (i, J)
of a rectangular grid as shown in Figure 2.2. Similarly. L'ij,kl is the phase of the correlation
measured between the two elements at locations (i. j) and (k, 1). Notice that the implicit
assumption of a periodic array is not necessary. We only make it here for the sake of
simplicity.
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(a) (b)

Figure 2.1. Two possible sets of phase measurements for an Y x Al periodic array are
shown. In Case 1. (a), only first-neighbor correlations are considered. In
Case 2. (b), diagonal neighbors are considered as well.
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1,1 1,2 1,3 ... IM
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I I' \ ",

"1,1 N,M

Figure 2.2. A two-dimensional rectangular grid.

1,2

2,2

Figure 2.3. A 2 x 2 array.
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To illustrate, let us consider the 2 x 2 array shown in Figure 2.3. Here, our equations
become

S11 - 612 0'11,12

611 - 621 = 011,21

611 - 622 ='l 1,22

612 - 621 = 012,21

612 - 622 = I'12,22

621 -6 22 0 lI21,22 (2.11)

Notice that we dropped the P sign for simplicity. However, the above set of equations.

(2.11), is exact provided that we interpret {6 ij } as estimates of the true phase errors (which
is naturally our intention).

As we did before, one unknown phase quantity could arbitrarily be set to zero. Therefore.
we can write

611 = 0, (2.12)

which makes the element at (1, 1) our phase reference. In matrix form. (2.11) and (2.12)
can be written as

A = 5,(2.13)

Swhere, 0
0 -1 _0

A= 0 0 1(.4
1 -1 0214
1 0

Io
0 1 J (214

621 (2..3)
\622/

011.21

'' = 122(2.16
0 12,21

W' 12.22
0'21,22
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2.3.1 Least Squares Solution

Let us, for now, make the gross simplifying assumption that the random components of

all measurements, { Oij,ki }, are independent and identically distributed random variables,

we can solve (2.13) in the least squares error sense [7] and obtain

= (AT A)- ATq ,  (2.17)

which, for our 2 x 2 example, yields

1 0 1 l 1
-1 2 2 2 2

1 101 I (2.18)

2 2 2 2

2.3.2 A Symmetric Phase Constraint

Examining (2.18), we can readily see that the solution is asymmetric. Although all elements

of the 2 x 2 array occupy similar positions with respect to the array (Figure 2.3), the solution

combines the measurements differently from one element to another (compare the answer
for elements (1, 2) and (2, 2), for example). The resulting asymmetry is counter intuitive

and, as we will show later, has unfavorable computational consequences. We traced the

source of the problem to equation (2.12), where we force one element to become our phase

reference. Instead of taking bl, = 0. we choose

S=0. 
(2.19)

i=1 j=

The above phase constraint, (2.19). treats all of the unknowns. {6ij} equally. It implicitly

assumes that all unknown phase quantities are measured with respect to a common phase

reference (bo given by
1N M

= )0 NVM ZZ (2.20)

Combining (2.10) and (2.19). we get (after dropping the _ sign as before)

.46 =T. (2.21)
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where, for a 2 x 2 array, we have this time

1 -1 0 0
1 0 -1 0
1 0 0 -1

A= 0 1 -1 0 (2.22)
0 1 0 -1
0 0 1 -1
1 1 1 1

- j6i (2.23)

622)

(0J11,12)
011,21

011,22

_ = i' 12 ,2 1  (2.24)
012,22

!21,22

0

Therefore, the least squares solution becomes

= (ATA)-'Ar = (41 )- 'A T qIl =1 TT (2.25)
4

where I is the identity matrix. Explicitly, we rewrite (2.25) as

1 0 0 0 11 01 0 1 1 0 1

1 0 (2.26)=4 0 -1 0 -1 0 11

0 0 -1 0 -i -1 1

It is straightforward to see that (2.'G) is a symmetric solution. The answer for each element
combines the measurements in a similar way reflecting the symmetry of the original 2 x 2
array.

It is important to note that the matrix G defined as

G = AT. (2.27)
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1,3

Fig~ure 2.4. A 2 x 3 array.



is not always proportional to I for a general A- x ill array. For example, for the 2 x 3 array

of Figure 2.4, we have

G 4 I 1 40 01
0 6 0 0 0 0

1 0 4 1 0 (2.2S)
0 0 1 4 0 4
0 0 0 0 60

1 0 0 1 0

For a general N x M array, we can show that G will always be

(1) symmetric and positive definite,

(2) persymmetric (symmetric about the cross diagonal),

(3) sparse,

(4) off-diagonal non-zero entries = 1.

The above properties are a direct consequence of our symmetric phase constraint, (2.19),
and can be exploited to efficiently compute G -1 [8]. However, further research is needed
in order to develop a fast matrix inversion algorithm that utilizes the above properties to
their fullest extent. Nevertheless, the symmetry of the answer allows us, as we show below,

to develop fast, near-optimal solutions for a general N x ,I array.

2.3.3 Weighted Least Squares Solution

As mentioned above, the least squares solution. (2.17), ignores the important fact that
correlation measurements taken throughout the array are correlated and exhibit different
variances. For example, it is shown in [1,2,6] that the variance of the phase of a correlation

measurement grows rapidly as the distance between the two elements involved is increased
beyond the spatial correlation distance. More specifically! it is shown in [6] (and in Section

2.3.4) that the variance of these phase estimates is given by

0", 2 t [ (R-o. ) - 1 (2.29)

where .1 is the number of looks used in estimating the interelement correlations. and
n; is the noise power at each element. Here R(0. 0) and R(.X. Y) are the values of the

theoretical spatial correlation function at the origin and at a two-dimensional spatial lag

(X.Y) respectively. Notice that R(XY) can be computed from the transmitter power
pattern and geometry as described previously. The above expression clearly shows that 72,.
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quickly increases as R(X, Y) decreases relative to R(O, 0) due to an increasing 2-D spatial2
lag (X, Y) (especially if a. < R(O, 0)).

The weighted least-squares solution [7] (which is also known as the "minimum variance
solution") provides the optimal estimates of the phase corrections and is given by

-mv = (A TRZ-A) - ' A TR z - 1 T, (2.31)

where lZ2" is the covariance matrix of all input phase measurements (notice that if the
random components of all phase measurements are independent and identically distributed
random variables with a common variance a2 , then 1IZ = o"21, and (2.31) reduces to (2.17),
i.e., b-mv = 6-

It should be noted that 1ZI is an N,. x N,. matrix where the total number of equations,
N,, is revised for Case 2, Figure 2.1.b. from (2.9) to

N, = 4NM - 3(N + -1f) + 3.

to account for the additional equation representing our symmetric phase constraint (2.19).
Equation (2.19) gives rise to a mathematical difficulty. As is, the last row and column of Z
will both consist of zeroes, making TZ? singular. Ve avoided this difficulty by conceptually
writing

N M

11:~ (2.32)
i=lj=l

where e is a fictitious, independent random variable whose variance, a. , can be made
arbitrarily small. This makes the last diagonal entry of 1ZI,

R iz(Ne,,) = a?, (2.33)

making I17i nonsingular. To our satisfaction, we found that the net result is independent2 (aU2nga
of the value of a? (as long as . > 0). Therefore, we took

2a (2.34)

in most of our computations of 1Z1.

2.3.3.1 Deriving The Error Covariance Matrix

The error covariance matrix. RZ, is defined [7] as

= E f(2.35)
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Figure 2.5. A phasor diagram representing phase measurement errors.
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where &'P contains the random components of %P, and E denotes expectation. The random

component, 6kij,kL, of the phase measurement Oi'ii,ki can be shown [1,2] to follow the phasor

diagram of Figure 2.5, where Rii,k, stands for R(xij - Xkj, Yij - ykl). It is straightforward

to show that E { Rii,kl} Rij,k,, where

M

f~ij~k T7Elmj + flm,jjlkm,kL + mk*

m1

= (IRij,klI + aii,kl) + J bij,k • (2.36)

As before, M is the total number of independent looks used. em,ij, nm,ij are, respectively,

the signal and noise at the receiver output of the array element at location (i,j) due to

the m th look in the absence of array distortion. Notice that e,,ij is the signal that would

be received had broadside illumination been used.

Assuming that the rms value of b04'i,kl is somewhat small, we can write (see Figure 2.5)

bij'k--..-.-..~l- (2.37)

,Rj,k

Therefore, entrics of R7" will have the general form

bij,kl bop,qr (2.38)

SI'.j,k1 6 L'op,.qr - Rij,k Rop,qr '

where the overbar denotes expectation and we assumed that R(X, Y) is real.

From (2.36), we can write

bI~~~~~kle. m, k I3 ,, +~k n- ..mj e,,~ 1 ij CmI- ncm ij eSmki+

1
rn = 1

e...u, n ,. , - , , + n,.,i n.,,k, - n cmj 1.,1 (2.39)

where
e,ij = c,,.,, + je,., , (2.40)

and
nnm~j = nc,j, njnsi (2.41)

Assuming that e,.,) and e,.,i are uncorrelated for n. rn (looks are assumed to be inde-

pendent), we get

bl 2 ~k*bopop .qr m.ij- m.k1 opC- m,qt
.j:[
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ecmOi e3m,ki esmopecmqr + eCm,,jesk.i "'op 'S.qr

mmij ecm,kjnsm,oe Cmq, - nnj cc,.k eCo 0 p IIrnqr +

rnj Cm l Cm,op m,qr -  nc ,,j Cm,ki 
6 

rnop Ullryiqr

ermsn m, Sknhrnopecmqr e CCn,j RimkiC c ,o P5smqr p +

n mij , c,,,.Ar , n ,op ncm,qr + no,,.ij n1Sm.k, .o..p 1 1 m.qr . (2.42)

Notice that we also assumed that (1) signal and noise are independent. (2) noise samples are
independent from element to element and from look to another, and (3) the two orthogonal
noise components n, and n, are uncorrelated [9].

Now, depending on the relationship between the four elements involved in the two corre-
lation measurements at hand, we recognize five distinct cases that cover all possibilities:

Case 1: Same Element Pair

In this case, we have

(i,j) = (o.p).

(k, l) =(q,r). (2.43)

Therefore, (2.42) reduces to

- [2 e2  
-- e e.ij 

6
Ck 5g k +

ij kL 3 S, Ckg -Si ij k

2 e2  + n 2,,, 62 + n 2 ,, c k,] + e 22.4
Cij Ski eS k rg~ 3 ~ 3 6 

r ki

62 n2  + n 2 n2  + n 2 1

We can use the identity

X 1 X 2 X3 X 4 = XlX 2 X3 X4 + .ix 3 -2X4 + 312X4 X2X 3  (2.45)

for zero mean Gaussian random variables. [9]. to reduce (2.44) to

b[,kl = [R(. 0)+ 2 u 2 (2.46)

where we used

ii S _( -

-7,

C 1 62 e2f
17tj Ckg *Aij Ski i. klJ*~

= 0. (2.47)
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The assumption that ec and e. are zero mean Gaussian random variables is well justified
according to the central limit theorem [9]. The complex signal received at each array
element is the result of a summation of contributions from a large number of scatterers
each of which produces a random component with zero mean.

Now, we are in a position to write the diagonal entries of TZI as

2 b 1___ 1 R (O ) 16j,1p - IRnkP - 2A- , - 1] (2.48)

which is identical to (2.29).

Case 2: Shared Front Elements

In this case, we have

(i,j) = (o,p),

(k.l) 6 (q,r). (2.49)

Therefore, (2.42) reduces to

biJ,ki bi,qr - [R(o. 0) + a2 J Rki.qr - RiJ,ki Rij,qrj ,(2.50)
2.11

and hence
1 [tR(O.0) + ] J Rki,qr - Rij.k ,Rijqr 1

6Wij,kl 4W~~r 2MRk ij,qr J (2.51)6 ij tvijq =23-"1 Rij,ki Rij,qr

Case 3: Shared Back Elements

In this case. we have

(i.j) #(op).

(k.1) (q,r). (2.52)

Therefore, (2.42) reduces to
[ (o.o0) + 0-2,1,1 2.3

bij,k bop,kl - 2.1  1o, Rij.op - Rij, Ropkl . (2.53)

and hence
1 [[R(O.0) + (2I Ri.op - Rij.,kRop.kt1

'ij,k1 (OoPMk -2 [ Rij.ki Rop.ki (2.54)
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Case 4: Back Element of One Measurement is the Front Element of the Other

In this case, we have

(k, 1) = (o, p).

(i,j) # (q,r). (2.55)

Therefore, (2.42) reduces to

bij,kl bkl,qr - j [[R(O, 0) n ] Rij,qr - Rij,kl Rkl,qr] (2.56)

and hence

-1 [ [R(O. 0) + 72] Rij,qr- Rij.k!Rki,qr] (2.37)6Vi~k Pk~r -2M Rij,kl Rkl,qr"

Case 5: No Shared Elements

In this case, (2.42) reduces to

*- 1
bJ,kl bop,qr - [Rij,op Rki,qr - Rij,qr Rkl,opj (2.5S)

and hence
1 [Rij,op Rki.qr- Rij,qrRtkiop] (2.59)

j, )op,qr = ,-'-Rijkl Rop,qr "

2.3.4 Phase Unwrapping of Correlation Measurements

The least squares solutions represented by equations (2.17) and (2.31) can be rewritten as

-1 = I 1 F L1- (2.60)

,,v = Ivm'. (2.61)

where t~js and Vm, are the N,. x N, matrices given by

IV1, = (A AT.4) - 1 .4 7 T (2.62)

TVmv = ( 6.4) .4 -3)
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nd N, is modified from (2.7) to
N,, = NM (2.64)

in order to account for distributing the phase reference within the array according to our
symmetric phase constraint.

W 1, and Win, can be interpreted as weighting matrices applied to the vector of phase
measurements, _4, in order to obtain the required phase correction at each array element
in the form of a weighted average of all phase measurements. Because of the modulo 2-r

nature of phase measurements, averaging phase can be quite hazardous [10,11]. In the
presence of 27r ambiguities, each phase correction will have an added phase term of the

form

ij = W xk,i x 2;n , (2.65)
k=l

where Wk,ij is a fraction, and nk is an integer ({Wk,ij} are entries of either W 1 or Wm,).

Therefore, yij (modulo 2r) will be a more-or-less random fraction of 2- that varies from

one array element to another, and hence will destroy array coherence. Removing 2w
ambiguities, or "phase unwrapping" of T is essential before applying the weighting matrices

as prescribed by (2.60) and (2.61).

We developed a reliable phase unwrapping scheme that allows us to obtain the optimal
solution 6my (or the suboptimal solution 61,) with high probability. The main idea is to

compare I to another vector %' obtained from an available solution , so that 2-, ambiguities
can be recognized and removed. Entries of 4' are computed according to

ij.kl = 6 ij - Sk, (2.66)

where { i} are entries of 6 which can be obtained in a number of ways ({ 6 ij} are forced

to range between -7r, +7r to start with by adding or subtracting the appropriate multiple

of 2r to each of them). In the following, we describe a sequential scheme that makes it

possible to obtain a near-optimal solution 6 that allows us to perform the required phase
unwrapping and hence obtain the optimal solution 6m.*

To illustrate, let us introduce two quick. suboptimal solutions where one element at the
center of a cluster of nearest neighbor elements is considered as a phase reference. The first
solution takes the phases of the correlation measurements between this central element

and its nearest neighbors as the needed corrections. No phase unwrapping is needed

for this cluster. Figure 2.6.a illustrates the situation. The second solution obtains aI number of estimates for the same phase correction at each element at the periphery of
the cluster. These estimates are obtained by integrating (summing) phase differences over
a number of short paths leading to the central element in a way similar to that used

in the one-dimensional SCA. Estimates of the same phase correction at each peripheral
element are averaged in order to obtain an estimate of improved quality (lower variance).
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(a) (b)

Figure 2.6. Suboptimal solutions are obtained for a cluster of array elements. Center
element is taken as a phase reference. (a) First-neighbor phase differences
provide a solution. (b) Another solution is obtained by averaging integrated
differences over a number of paths (solid lines).

II
/

/ 1

I(a) (b)
Figure 2.7. Another layer of elements is inicluded, (a) First-neighbor phase differences

provide a solution. (b) Another solution is obtained by avraingi
differences over a number of paths solid lines).
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To perform the averaging, phase unwrapping is needed. However, unwrapping is trivial
since all values being averaged (at each peripheral element) are estimates of the same
quantity. 27r ambiguities are easily recognized and corrected. The situation is illustrated
in Figure 2.6.b. Notice also that the "phasor method" for phase unwrapping [12,13] could
be easily implemented for this purpose. The main idea behind this method is to use the
approximation

1 L L j1 .L P:: arg{Ze~

=arg { j(0I±27ni) (2.67)

where {0,} is a set of ambiguous phase measurements, and {ni} are integers that vary
from one term to another. The above approximation holds under the assumption that { Oj },
the unambiguous phase terms, are clustered around some mean value ({01} are allowed
to vary around their mean over an interval smaller than 7r, otherwise the approximation
rapidly fails).

Starting from the answers provided by either of our two quick solutions (preferably the
second), complete phase unwrapping of all correlation measurements (within the cluster)
is performed as mentioned above. Now, the optimal solution for this cluster is obtained
according to the weighted least squares method. With the optimal solution for the central
cluster in hand, we can progress to the next outward layer of elements. First we obtain a
quick answer based on one of our two methods. A generalization of the first method esti-
mates corrections at the new layer by adding the phase differences (from nearest-neighbor
correlation measurements) between the new layer and the layer that precedes it to the
optimal corrections obtained for that preceding layer (see Figure 2.7.a). A generalization
to the second method averages a number of estimates of the differential phase correction
needed for each element of the new layer. These estimates are obtained for each peripheral
clement by integrating phase differences along short paths starting from the same element
and ending at that element of the preceding layer nearest to it. As mentioned above,
straightforward phase unwrapping is performed before averaging (see Figure 2.7.b). Once
more, corrections at the new layer are obtained by adding these smoothed phase differences
to the optimal corrections obtained for the preceding layer.

Again, complete phase unwrapping is obtained based on one of our quick solutions. The
optimal solution for all elements (up to the new layer) is then obtained. The same proce-
dure is repeated, progressing to outer layers of the array, until the optimal solution for all
array elements is reached.

It is worthwhile to notice the following:

(1) The above describes a sequential method for achieving the optimal solution 6mv
where we grow the solution in steps. In each step we increase the size of our
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element cluster by including a new layer of elements moving outwards. We
try not to deviate much from the optimal solution in each step by using near-
optimal solutions only to enable phase unwrapping and then computing the

optimal solution for the new cluster. Such a lengthy procedure is only needed
when we try to push the system to its limits (considering situations of poor
SNR, low spatial correlation, and/or small numbers of looks. For situations
where the quality of the phase measurements is moderate to start with, we can
obtain a solution, & rather quickly by integrating phase differences staring from

a reference element at the middle of the array and moving outwards towards
the outer layer of array elements in just one step. ( can then be used to phase
unwrap I in order to obtain 6 mv for the whole array in a second and final step.

(2) We referred to the "phasor method" of phase unwrapping with regard to the
possibility of using it to obtain our second -quick" solution (Figures 2.6.b.

2.7.b). The same method can be used in order to obtain a good approximation
to 6MV as well. Caution is due however. Trying to compute entries of 6,n as

6bijmv ;, arg T L k'i lei Sign( u'k"i 'k (2.68)
1k=1

where 'k is the k th entry of T, will fail because { sp, } are not necessarily
clustered within a r interval as required (notice that sign(x) is defined as

sign(x) = +1, x >0; sign(x) = -1, x <0).

A solution on the form of

Abi., ; arg l wk.ai ij sign(u 'k. )[
O

k- 'k] (2.69)
I k=1

where { O"k } are entries of %I, is possible. In this case. we compute entries of 6rn

as
bim,, - A 6ijv + j, (2.70)

where {6ij} are the suboptimal phase corrections used to compute P according
to (2.66).

Because (2.69) is only an approximate relationship. we found that (2.70) does
not converge to the minimum variance solution in just one step. However. V C

found that updating . using (2.70) and repeating (2.69) a numbcr of times does

converge to the optimal solution after a relatively small number of iterations.
This procedure proved to be the most reliable way of reaching the optinal
answer under poor operating conditions (low SNR. weak spatial correlation.

and/or small number of looks). It should be noted that such an iterative pro-
cedure is not computationally intensive because the optimal weights { W,. }. Or
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simply IVmv, need to be computed just once. The same weights are repeatedly

applied, according to (2.69), in each iteration.

2.4 Expected Performance

2.4.1 Output Covariance Matrices

The key to predicting the performance of our algorithms is to compute the output covari-

ance matrices Rols and lZomv, defined as

I 1Z~~~ol = E Is~~' ,(.1

IR. = E {Mvi} (2.72)

Here, bb and 6mv are the least squares and minimum variance solutions respectively, as-

suming broadside illumination and the absence of any array distortion. That is, _6., and

mv, in (2.71) and (2.72), reflect only the errors in the estimation process. Therefore, we
can write

V0= , (2.73)

6M =I'Vmv6-'P . (2.74)

Substituting (2.73) and (2.74) into (2.71) and (2.72) respectively, expanding W1. and W,

according to (2.62) and (2.63), and using (2.35), we get

IOls = 0'2 (ATA) - 1 , (2.75)

IT7Omv = ( ATl?- 4 ) -1 •(2.76)

Notice that we used

I 1ZI = (72I (2.77)

in deriving (2.75), where a 2 is the common variance of the presumably uncorrelated phase

measurements. As mentioned earlier (with regard to establishing the motivation for deriv-

ing the minimum variance solution) equation (2.77) could constitute a gross approximation
to the true input covariance matrix. TZR. As we show below, (2.75) results in over-optimistic

performance predictions that do not measure up to computer simulation results. Computer

simulations have shown the superiority of the minimum variance solution, (2.31), over least
squares, (2.17), and verified the accuracy of our performance predictions based on (2.76).
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2.4.2 Expected Mainbeam Gain Loss

It is shown in [1,2] that the normalized expected mainbeam gain loss is given by

Go = + (2.78)

where Nu is the total number of array elements given by (2.64). and rnm is given by either

rnm = TZoi.(n. m) (2.79),

or
o rm = Romv(n. m) (2.80)

depending on which solution we are considering.

Concerning ourselves with the minimum variance solution (weighted least squares), we
substituted (2.80) into (2.78) in order to produce the set of performance curves shown in
Figure 2.8, where we plot G. versus SNR for different system parameters (SNR refers to

the signal to noise ratio per array element). The upper group of curves corresponds to a
total of 100 looks. The lower group corresponds to 20 looks. Curves within each group
correspond to array sizes 2 x 2, 3 x 3, 4 x 4, and 5 x 5 (moving from top to bottom).

Performance curves (Figure 2.8) show that a 5 x 5 array trying to image an extended target

(consisting of 3 x 3 speckles) at a signal to noise ratio of 0 dB per element per look (with
a total of 20 available looks) will only suffer a 1 dB loss in the normalized mainlobe gain
of its point spread function after applying our optimal solution. Computer simulations

verified this result. To the best of our knowledge. such performance is unprecedented (see
for example [14J).

I Notice that although our computer code is quite general. we can only handle array sizes

of up to 5 x 5 elements because of memory limitations. For an N x N array, we find that

in order to compute TRomv (or the optimal weights' for that matter). we need to invert

Ne x IV, matrices, whereI NVe = 4N 2 - 6.V -3.

Table 2.1 gives Ne versus N.

Notice that the optimal weights. l~my, can be precomputed and stored in a look-u) table for

a given system. Because the solution is symmetric (due to our symmetric phase constraint)

a small fraction of the entries of IV,,, has to actually )e computed and stored.
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Figure 2.8. Expected normalized mainiobe gain loss (dB) as a function of SNR (dB) for
four different array sizes. The upper group of curves corresponds to a total
of 100 looks. The lower group corresponds to 20 looks. Curves within each
group correspond to array sizes 2 x 2. 3 x 3. 4 x 4, and 5 x 5 (moving from top
to bottom). An extended target is assumed. Target size and interelement
spacing are kept constant in absolute units) for all arrays. For the 5 x 5
array, target image consists of 3 x 3 speckles.
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Table 2.1. N. versus N

N 3 5 7 9 11
Ne 21 73 157 273 421

We believe that resorting to more powerful computers (which may be able to barely handle
an 11 x 11 array, for example), or complicating the software using our memory-limited
machines is beyond the scope of this effort. Our performance curves clearly show the
trend for larger array sizes and are, in this sense, quite sufficient.

Finally, we reemphasize the fact that extensive computer simulations have verified all our
algorithms and performance predictions.
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3.0 PHASE II EXPERIMENTS

3.1 Equipment Definition

We identified two practical possibilities for the experimental validation of our self-cohering
techniques. Each possibility has its attractive features. In the following we discuss both.

3.1.1 Using NWC Experimental System

Figure 3.1 shows the basic experimental system at the Naval Weapons Center (NWC).
China Lake, California [1,2]. The following is a brief description of the system based on
[2]. The experimental set-up consists of a Mach-Zender interferometer as shown in Figures
3.1.a and 3.1.b. Initially, homodyne detection was implemented at NWC: i.e.. both the laser
and local oscillator (LO) were of the same frequency. To obtain accurate measurements
of the complex amplitude of the signal in the homodyne mode. quadrature detection was
used by recording two interference patterns where the second one was 900 out of phase
with the first. This phase change was performed by mounting mirror 'W (Figure 3.1.a) on
a PZT and changing the PZT voltage so as to translate the mirror A/8.

To enable the effects of Doppler shifts to be studied and thereby demonstrate improved
resolution, the set-up was modified to that shown in Figure 3.1.b. The two signal beams
are, respectively, reflected off of PZT-mounted mirrors once or twice. The Doppler shifts
are introduced by ramping the PZT mounted mirrors in unison with the result that if
the beam reflecting off only one PZT-mounted mirror has a shift f, the beam reflecting
off both PZT-mounted mirrors has a shift of 2f. Since in this mode of operation the
interference pattern can now be monitored as a function of time, quadrature detection is
not required. Instead. one interference pattern coupled with the temporal information is
enough to extract the complex amplitude of the signal.

Due to electronic simplicity and the size and number of its detectors. a CCD video camera
is used. The size of each detector aperture (- 20 x 20 im) results in high mixing efficiency
between the signal and LO beams over laboratory distances, while the large number of
detectors allows arrays as large as 127 x 127 elements. A major disadvantage of the CCD
is its low frequency response (< 15 Hz). Although low. this bandwidth is enough to use
with very low frequency Doppler shifts and thereby emulate a real (high speed) systeni.
For example, a slowly rotating turntable is often used in order to either resolve an extended
target (mounted on top of the turntable) in Doppler. or provide a number of independent
looks of such a target provided that the target has an optically-rough (diffuse) surface.
The video camera is linked to a computer-controlled video frame grabber that enables
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Figure 3.1. Experimental configuration at NWC. ( a) angle-angle imaging. (b) angle-
angle-Doppler imaging (From (21).
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acquisition and subsequent processing of the data. No lenses are attached to the camera.
Instead, light is allowed to fall directly onto the photosensitive surface.

Since the positions of the photodetectors fall on an optically-precise rectangular grid fixed
on the CCD chip, aberrations are primarily introduced by ensuring that the mirror ,12 in
Figures 3.1.a and 3.1.b is of very low quality, introducing about three waves of errors by
the LO. Further aberrations are introduced by inserting a piece of frosted bathroom glass
in the LO beam.

Notice that the most attractive feature of the experimental system at NWC is that it
already exists. A number of useful experiments can be performed using this existing set-
up with virtually no added cost in terms of investments in new hardware. On the other
hand, the existing system is restrictive in many important respects. Most restrictions stem
from the fact that the receive array is made of a CCD chip. As mentioned above, such a
CCD array has a very low bandwidth and offers no significant geometrical flexibility. In
order to overcome these shortcomings, we introduce the following alternative experimental
system.

3.1.2 A lOx10 Experimental Array

The second practical possibility is to build a flexible experimental array system consisting
of individual detectors (photo-diodes) of a useful, but yet economical, size. We propose
to build a 10 x 10 heterodyne array of individual detectors in the visible region. Such an
array can produce useful angle-angle images of extended targets (resolving them into 5 x 5
pixels for example). Moreover, working in the visible region obviates the need for expensive
liquid nitrogen cooling, which would be required for an infra-red (CO 2 laser) system. Data
collection will be PC-based using off-the-shelf multi-channel A/D conversion cards (with
bus extension units). This strategy will minimize development cost. Figure 3.2 illustrates
the proposed system. A cw Argon Ion laser will be used to illuminate a very slowly rotating
target. The PZT-mounted mirror, M, is used to introduce a constant doppler shift in the
LO signal (reflected off its surface) by ramping the voltage across the PZT during data
collection. This frequency shift is needed in order to separate the complex amplitude
of the received signals by digital filtering without the need for quadrature detection. The
introduced shift in LO frequency should be greater than (or equal to) the maximum doppler
shift due target rotation. Therefore, the minimum needed sampling rate should be equal
to twice the target doppler bandwidth (for a symmetric target. doppler bandwidth will be
equal to twice the maximum doppler shift in target returns). Our proposed data acquisition
system will enable us to sample the receive aperture at a 250 k sample/sec rate. Such a
sampling rate (which is much higher than that of any experimental set-up in ('xistence)
will allow us to study self-phasing in the presence of atmospheric turbulence and array
vibrations.
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Figure 3.2. A proposed 10 x 10 array of individual detectors. (a) experimental configu-
ration. (b) array element. 1 c) data acquisition.
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Compared with existing experimental systems [1-3], which use unaberrated, monolithic
CCD detector arrays (obtained from commercially available video cameras), our proposed
set-up will offer the following:

(1) The ability to introduce true mechanical errors (axial errors, etc.).

(2) The ability to experiment with different array geometries (highly thinned, random.
rectangular, square, linear, etc.).

(3) The ability to introduce vibrations within the array. This can simulate an airborne
system (above the clouds) for a Theater Missile Defense (TMD) scenario.

(4) The ability to image a small target at a longer range through significant atmo-
spheric turbulence using a large, thinned array configuration (simulating a practical

TMD scenario). Such an experiment is possible because photo-diodes offer signif-

icantly higher bandwidths (compared to CCD arrays). Notice that time-varying
atmospheric turbulence can be emulated using a fan or a blow-torch.

(5) The ability to upgrade the working bandwidth of the system by upgrading the data
acquisition and data transfer systems.

An initial estimate of the cost of building our proposed experimental system (labor and

materials) comes roughly to $120 K which is well within the Phase II SBIR budget. Table

3.1 provides details of our rough cost estimate.

3.2 Experiments DefinitionI
As discussed above, we are considering two possibilities for the experimental validation of
our self-cohering techniques. Definition of the Phase II experiments depends on which of

the two systems is going to be used. In the following, we consider both possibilities.

3.2.1 Experiments Performed Using the NWC Set-Up

Using the experimental set-up at NWC (described in Section 3.1.1). we can demonstrate
the following self-cohering algorithms and compare their performance as a function of SN\R:

(1) Least squares two-dimensional (2-D) SCA.

(2) Weighted least squares (minimum variance) 2-D SCA.

(3) The SCA as a -multiple scatterer algorithm".
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Table 3.1. Cost Estimate of the 10 x 10 Experimental Array

Item Quantity Unit Price Price
---------------------------------------------------------------------------

Ion Argon Laser 1 $10,000 $10,000

Beam Splitters 2 $100 $200

PZT-Mounted Mirror 1 $200 $200

Precision Turntable 1 $2,000 $2,000

Fiber Optic LO Distribution Network 1 $1,000 $1,000

Fiber Optic Bundle 1 $600 $600

Array Elements 100 $400 $40,000

4-Channel A/D Cards 25 $1,000 $25,000

Bus Extension Units 2 $500 $1,000

Total Material Cost $80,000

Labor $40,000

Total Cost $120,000
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In (1) and (2), a number of independent looks will be obtained from a slowly rotating,
extended, diffuse test target. Correlation measurements will be made based on these inde-
pendent looks and used to compute either solution. Also, our symmetric phase constraint
will be implemented. The following methods of phase-unwrapping (which we developed
during the course of this Phase I study) will be tried and compared in terms of reliability
(success rate):

(a) Direct phase-unwrapping.

(b) Generalized, iterative phasor method.

The initial solution for array phase corrections needed for (a) and (b) will be obtained
according to the following two methods (discussed in Section 2.3.4):

(i) Direct integration of phase differences starting from an element near array
center and moving outwards (radially) in all directions (quickest method).

(ii) Sequential near-optimal/optimal solutions for subarrays of growing size (most
reliable method).

In (3), returns from a number of scatterers on the surface of a slowly rotating extended
test target will be separated according to Doppler and then used to provide the correlation
measurements needed by different versions of the two-dimensional SCA.

In all cases, array aberration will be emulated as described in Section 3.1.1. Also. before
and after (self-cohering) images will be produced. Quantitative evaluation of performance
will be based on the normalized gain loss of the mainlobe of the point spread function
which can be obtained from residual phase errors in the absence of array distortion (see
Section 2.4).

3.2.2 Experiments Performed Using the 10x 10 Array

In addition to all experiments defined in Section 3.2.1. the 10 x 10 array will be used to
demonstrate the following:

(1) Self-cohering in the presence of true position errors in the array. Axial as well as
transversal position errors will be introduced by perturbing the positions of individ-
ual detectors from one experiment to another.

(2) Self-cohering in the presence of mechanical vibrations. Such vibrations will be intro-
duced into the simple structure supporting the array using a small dc motor driving
an eccentric wheel. Notice that in order to ensure successful dynamic self-cohering
array structure should look 'frozen- (on a wavelength scale) during the time it takes
to collect the necessary "looks".
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I

1 (3) Self-cohering in the presence of atmospheric turbulence. A heat source (e.g., a
blow-torch) or a fan will be used to introduce significant turbulence in the received

I signal path. The amount of turbulence will be measured in terms of the ratio D/d0 ,
where D is the diameter of the true aperture, and d. is that of the reduced effective
aperture (due to turbulence). Similar to self-cohering in the presence of vibrations,
data collection must be much faster than turbulence decorrelation time.

(4) Various array geometries such as highly thinned, random, rectangular, square, cir-
cular, linear, etc.

I

I
I
I
I
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4.0 CONCLUSIONS AND RECOMMENDATIONS

The main conclusion of this Phase I SBIR study is that "self-phasing" of a large receive
array of optical subaprtures is quite feasible using our advanced "self-cohering" techniques.
That is, it is possible, for a bistatic laser radar system, to obtain diffraction-limited per-
formance from a badly distorted, large, optical receive aperture adaptively (using returns
from the target area). No strong point source is required. Instead, a number of indepen-
dent "looks" from the target are needed. These looks can be obtained via either of the
following two methods (or by a combination of both):

(1) By range diversity. That is, if the laser radar can resolve the target into a number
of range cells, then each target range cell will provide us with an independent look.

(2) By rotation diversity. A rotating target with a diffuse surface will provide us with
a number of independent looks as we observe it over time. Because of the short
optical wavelengths involved, a small rotation from pulse to pulse is sufficient to
decorrelate the looks.

During the course of this study, we developed a number of advanced self-cohering tech-
niques suited to the problem. In particular, we developed:

(1) Least squares two-dimensional (2-D) SCA.

(2) Weighted least squares (minimum variance) 2-D SCA.

(3) The SCA as a "multiple scatterer algorithm".

The first two techniques can be considered as extensions of the Spatial Correlation Al-
gorithm (SCA) to two-dimensional array geometries. The second algorithm provides the
optimal solution to the problem given a reasonable number of looks. For the case where
we have a limited number of looks and some of which contain dominant scatterers, the
third technique exploits these special looks in order to achieve effective self-cohering.

All three techniques solve a set of overdetermined equations relating array distortion to
phase measurements. The solutions take on the general form

-=: _1 (4.1)

where 6 is the vector of phase corrections. II' is a weighting matrix, and %P is the vector of
differential phase measurements.

We developed a symmetric phase constraint that resulted in a symmetric solution amenable
to fast matrix inversion algorithms (needed for computing IV). Notice that the optimal
weights, TV, can be precomputed and stored in a look-up table for a given system. Because



the solution is symmetric, a small fraction of the entries of W has to actually be computed
and stored.

Phase-unwrapping of *_ is essential before applying (4.1). We developed the following
methods of phase-unwrapping:

(a) Direct phase-unwrapping.

(b) Generalized, iterative phasor method.

Both methods, (a) and (b), require an initial solution for array phase corrections. We
developed two techniques for obtaining such an initial solution (see Section 2.3.4):

(i) Direct integration of phase differences starting from an element near array
center and moving outwards (radially) in all directions (quickest method).

(ii) Sequential near-optimal/optimal solutions for subarrays of growing size (most
reliable method).

We analyzed and predicted the performance of our newly developed algorithms. Perfor-
mance predictions are very promising (predicted performance meets and exceeds the goals
set by the staff of the Naval Weapons Center (NWC), China Lake. California). Perfor-
mance curves show that a 5 x 5 array trying to image an extended target (consisting of
3 x 3 speckles) at a signal to noise ratio of 0 dB per element per look (with a total of 20
available looks) will only suffer a 1 dB loss in the normalized mainlobe gain of its point
spread function after applying our optimal solution. Computer simulations verified this
result. To the best of our knowledge, such performance is unprecedented.

In general, extensive computer simulations have verified all our algorithms and performance
predictions.

We have also designed two sets of Phase II experiments for the purpose of demonstrating
our advanced self-cohering techniques:

(1) Using the NWC experimental system:

(1.1) A number of useful experiments can be performed with existing hardware.

(1.2) On the other hand. the existing CCD array has a very low bandwidth and
offers no significant geometrical flexibility.

(2) Building a 10 x 10 array of individual detectors. This approach makes it possible
to test our techniques under realistic conditions. Such an experimental set-up will
enable us to:

(1) Introduce true mechanical errors.

(2) Experiment with different array geometries.

56



(3) Introduce vibrations within the array. This can simulate an airborne system
(above the clouds) for a Theater Missile Defense (TMD) scenario.

(4) Image a target through significant atmospheric turbulence (for possible TMD
applications).

(5) Upgrade the working bandwidth of the system by upgrading the data acqui-
sition and data transfer systems.

For future work, we recommend the following:

(1) Build the 10 x 10 array experimental system described in Section 3.1.2, and use it
in order to demonstrate the validity and performance of our advanced self-cohering
techniques under realistic conditions. In particular, we recommend to perform all
experiments defined in Section 3.2 for our proposed flexible experimental set-up.

(2) Develop fast algorithms to compute the optimal weights. A number of subarray
processing ideas should also be pursued. For example, the optimal weighting matrix
for a smaller subarray could be used throughout the larger array provided some
overlap between subarrays is allowed [1].

(3) Perform some theoretical work aimed at comparing the performance with and with-
out the symmetric phase constraint. Our observations indicate that our symmetric

phase constraint results in superior performance as well. A theoretical proof is
needed however.
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